Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
1.
researchsquare; 2024.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-3953575.v1

ABSTRACT

The outbreaks of severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 highlight the need for countermeasures to prevent future coronavirus pandemics. Given the unpredictable nature of spillover events, preparing antibodies with broad coronavirus-neutralizing activity is an ideal proactive strategy. Here, we investigated whether SARS-CoV-2 infection and vaccination could provide cross-neutralizing antibodies (nAbs) against zoonotic sarbecoviruses. We evaluated the cross-neutralizing profiles of plasma and monoclonal antibodies constructed from B cells from coronavirus disease 2019 (COVID-19) convalescents and vaccine recipients; against sarbecoviruses originating from bats, civets, and pangolins; and against SARS-CoV-1 and SARS-CoV-2. We found that both SARS-CoV-2 infection and vaccination elicited broad cross-nAbs against multiple sarbecoviruses, and vaccination boosters significantly augmented the magnitude and breadth of nAbs to sarbecoviruses. Of the nAbs, several exhibited neutralization activity against multiple sarbecoviruses by targeting the spike receptor-binding domain (RBD) and competing with angiotensin-converting enzyme 2 (ACE2) binding. SCM12-61 demonstrated exceptional potency, with half-maximal inhibitory concentration (IC50) values of 0.001–0.091 μg/mL, indicating its potential for combating new sarbecovirus outbreaks. Collectively, our findings suggest that both SARS-CoV-2 infection and current vaccination schemes elicit broad cross-neutralizing antibodies against diverse sarbecoviruses, enforcing prevention and therapeutic strategies for future sarbecovirus spillover events.


Subject(s)
COVID-19 , Coronavirus Infections
2.
Journal of food biochemistry ; 45(5):Not Available, 2021.
Article in English | EuropePMC | ID: covidwho-2317683

ABSTRACT

Liupao tea, a drink homologous to medicine and food. It can treat dysentery, relieve heat, remove dampness, and regulate the intestines and stomach. The objective of this study is to explore the material basis and mechanism of Liupao tea intervention in COVID‐19 and to provide a new prevention and treatment programme for COVID‐19. We used high performance liquid chromatography to analyze the extract of Liupao tea and establish its fingerprint. The main index components of the fingerprint were determined using SARS‐COV‐2 3‐chymotrypsin‐like protease (3CLᵖʳᵒ), and an in vitro drug screening model based on fluorescence resonance energy transfer was used to evaluate its inhibitory activity in vitro. The fingerprint results showed that the alcohol extract of Liupao tea contained gallic acid, epigallocatechin gallate (EGCG), caffeine, epicatechin gallate, rutin, and ellagic acid. The molecular docking binding energies of the six index components of SARS‐CoV‐2 3Clᵖʳᵒ were all less than −5.0 kJ/mol and showed strong binding affinity. The results of in vitro activity showed that the IC₅₀ of EGCG was 8.84 μmol/L, which could inhibit SARS‐CoV‐2 3Clᵖʳᵒ to a certain extent. This study unleashed that EGCG has a certain inhibitory effect on SARS‐CoV‐2 3CLᵖʳᵒ, and Liupao tea has a certain significance as a tea drink for the prevention of COVID‐19. PRACTICAL APPLICATIONS: The objective of this study was to explore the material basis and mechanism of Liupao tea intervention in COVID‐19 and to provide a new prevention and treatment programme for COVID‐19. The molecular docking binding energies of the six index components of Liupao tea with SARS‐CoV‐2 3CLᵖʳᵒ were all less than −5.0 kJ/mol, among them, the enzyme activity experiment shows that EGCG has a certain inhibitory effect on SARS‐CoV‐2 3CLᵖʳᵒ, it can be used as a potential SARS‐CoV‐2 3CLᵖʳᵒ inhibitor. We predicted that the understandings gained in the current research may evidence that Liupao tea has a certain significance as a tea drink for the prevention of COVID‐19.

3.
J Exp Med ; 220(8)2023 08 07.
Article in English | MEDLINE | ID: covidwho-2316628

ABSTRACT

Type I interferons are important antiviral cytokines, but prolonged interferon production is detrimental to the host. The TLR3-driven immune response is crucial for mammalian antiviral immunity, and its intracellular localization determines induction of type I interferons; however, the mechanism terminating TLR3 signaling remains obscure. Here, we show that the E3 ubiquitin ligase ZNRF1 controls TLR3 sorting into multivesicular bodies/lysosomes to terminate signaling and type I interferon production. Mechanistically, c-Src kinase activated by TLR3 engagement phosphorylates ZNRF1 at tyrosine 103, which mediates K63-linked ubiquitination of TLR3 at lysine 813 and promotes TLR3 lysosomal trafficking and degradation. ZNRF1-deficient mice and cells are resistant to infection by encephalomyocarditis virus and SARS-CoV-2 because of enhanced type I interferon production. However, Znrf1-/- mice have exacerbated lung barrier damage triggered by antiviral immunity, leading to enhanced susceptibility to respiratory bacterial superinfections. Our study highlights the c-Src-ZNRF1 axis as a negative feedback mechanism controlling TLR3 trafficking and the termination of TLR3 signaling.


Subject(s)
COVID-19 , Interferon Type I , Animals , Mice , Antiviral Agents , SARS-CoV-2 , Toll-Like Receptor 3 , Genes, src
4.
Technol Health Care ; 31(4): 1375-1383, 2023.
Article in English | MEDLINE | ID: covidwho-2270024

ABSTRACT

BACKGROUND: The ABO blood group is closely related to clinical blood transfusion, transplantation, and neonatal hemolytic disease. It is also the most clinically significant blood group system in clinical blood transfusion. OBJECTIVE: The purpose of this paper is to review and analyze the clinical application of the ABO blood group. METHODS: The most common ABO blood group typing methods in clinical laboratories are hemagglutination test and microcolumn gel test, while genotype detection is mainly adopted in clinical identification of suspicious blood types. However, in some cases, the expression variation or absence of blood type antigens or antibodies, experimental techniques, physiology, disease, and other factors affect the accurate determination of blood types, which may lead to serious transfusion reactions. RESULTS: The mistakes could be reduced or even eliminated by strengthening training, selecting reasonable identification methods, and optimizing processes, thereby improving the overall identification level of the ABO blood group. ABO blood groups are also correlated with many diseases, such as COVID-19 and malignant tumors. Rh blood groups are determined by the RHD and RHCE homologous genes on chromosome 1 and are classified as Rh negative or positive according to the D antigen., the agglutination method is often used in clinical settings, while genetic and sequencing methods are often used in scientific research. CONCLUSION: Accurate ABO blood typing is a critical requirement for the safety and effectiveness of blood transfusion in clinical practice. Most studies were designed for investigating rare Rh blood group family, and there is a lack of research on the relationship between Rh blood groups and common diseases.

5.
Int J Ment Health Nurs ; 2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2269189

ABSTRACT

Patients with coronavirus disease 2019 (COVID-19) has been isolated in hospital-managed isolation hotels under a policy of the Taiwan government. Centrally isolation patients are more likely to experience psychological symptoms. The purpose of the study was to investigate emotional disturbance during their isolation period and then pinpoint the factors during their isolation period associated with the emotional disturbance. We retrospectively analysed the medical charts of the patients confined to a Banqiao isolation hotel between May 28 and July 3, 2021. The 5-item brief symptom rating scale (BSRS-5) was used to evaluate emotional disturbance levels. Descriptive and logistic regression was used for the data analysis. In total, 197 complete medical records were reviewed, and of these 84 (42.6%) showed emotional disturbance. The majority of them reported only minor disturbance (n = 49, 58.3%). After controlling for confounding factors, being satisfied about medical information was the only protective factor associated with emotional disturbance (OR = 0.2, P = 0.018). Being a male patient (OR = 3.0, P = 0.005), worrying about stigmatization (OR = 2.2, P = 0.041) and being unable to contact family members (OR = 2.9, P = 0.018) increased the risk of experiencing emotional disturbance. Patients with clinical symptoms, namely sore throat (OR = 3.4, P = 0.013) and muscle aches (OR = 6.3, P = 0.005), were also found to be more likely to report emotional disturbance. Mental disturbance commonly occurs among patient with COVID-19 who are isolated in a hospital-managed hotel. Being a male patient, having symptoms, namely a sore throat and muscle pain, being unable to contact family and/or a failure to receive sufficient medical information were found to be associated with emotional disturbance. In order to help isolated patients, government officials should provide a clear rationale for isolation and recognize the patients' efforts to follow the government's policy, which will help to minimize social stigma.

6.
J Nanobiotechnology ; 20(1): 511, 2022 Dec 03.
Article in English | MEDLINE | ID: covidwho-2254845

ABSTRACT

Inherited Retinal Diseases (IRDs) are considered one of the leading causes of blindness worldwide. However, the majority of them still lack a safe and effective treatment due to their complexity and genetic heterogeneity. Recently, gene therapy is gaining importance as an efficient strategy to address IRDs which were previously considered incurable. The development of the clustered regularly-interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) system has strongly empowered the field of gene therapy. However, successful gene modifications rely on the efficient delivery of CRISPR-Cas9 components into the complex three-dimensional (3D) architecture of the human retinal tissue. Intriguing findings in the field of nanoparticles (NPs) meet all the criteria required for CRISPR-Cas9 delivery and have made a great contribution toward its therapeutic applications. In addition, exploiting induced pluripotent stem cell (iPSC) technology and in vitro 3D retinal organoids paved the way for prospective clinical trials of the CRISPR-Cas9 system in treating IRDs. This review highlights important advances in NP-based gene therapy, the CRISPR-Cas9 system, and iPSC-derived retinal organoids with a focus on IRDs. Collectively, these studies establish a multidisciplinary approach by integrating nanomedicine and stem cell technologies and demonstrate the utility of retina organoids in developing effective therapies for IRDs.


Subject(s)
Nanoparticles , Retinal Diseases , Humans , CRISPR-Cas Systems/genetics , Prospective Studies , Retinal Diseases/genetics , Retinal Diseases/therapy , Retina , Genetic Therapy
7.
Adv Mater Technol ; : 2200387, 2022 Aug 05.
Article in English | MEDLINE | ID: covidwho-2242568

ABSTRACT

The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID-19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID-19 pandemic.

8.
J Chin Med Assoc ; 86(2): 135-137, 2023 02 01.
Article in English | MEDLINE | ID: covidwho-2236816

ABSTRACT

The Omicron variant BA.2 is the dominant form of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak in many countries, including those that have already implemented the strictest quarantine mandates that effectively contained the spread of the previous variants. Although many individuals were partially or fully vaccinated, confirmed Omicron infections have far surpassed all other variants combined in just a couple of months since the Omicron variant emerged. The ChAdOx1-S (AstraZeneca), BNT162b2 (Pfizer-BioNTech), and mRNA-1273 (Moderna) vaccines offer protection against the severe illness of SARS-CoV-2 infection; however, these currently available vaccines are less effective in terms of preventing Omicron infections. As a result, a booster dose of BNT162b2 or mRNA-1273 is recommended for individuals >12 years old who had received their second dose of the approved vaccines for >5 months. Herein, we review the studies that assessed the clinical benefits of the booster dose of vaccines against Omicron infections. We also analyzed public data to address whether early booster vaccination effectively prevented the surge of the Omicron infections. Finally, we discuss the consideration of a fourth dose of vaccine as a way to prevent possible upcoming infections.


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , Humans , Child , BNT162 Vaccine , COVID-19/prevention & control , SARS-CoV-2
9.
Phytochem Rev ; 21(1): 239-289, 2022.
Article in English | MEDLINE | ID: covidwho-2237168

ABSTRACT

Medicinal plants are one of the most important sources of antiviral agents and lead compounds. Lignans are a large class of natural compounds comprising two phenyl propane units. Many of them have demonstrated biological activities, and some of them have even been developed as therapeutic drugs. In this review, 630 lignans, including those obtained from medicinal plants and their chemical derivatives, were systematically reviewed for their antiviral activity and mechanism of action. The compounds discussed herein were published in articles between 1998 and 2020. The articles were identified using both database searches (e.g., Web of Science, Pub Med and Scifinder) using key words such as: antiviral activity, antiviral effects, lignans, HBV, HCV, HIV, HPV, HSV, JEV, SARS-CoV, RSV and influenza A virus, and directed searches of scholarly publisher's websites including ACS, Elsevier, Springer, Thieme, and Wiley. The compounds were classified on their structural characteristics as 1) arylnaphthalene lignans, 2) aryltetralin lignans, 3) dibenzylbutyrolactone lignans, 4) dibenzylbutane lignans, 5) tetrahydrofuranoid and tetrahydrofurofuranoid lignans, 6) benzofuran lignans, 7) neolignans, 8) dibenzocyclooctadiene lignans and homolignans, and 9) norlignans and other lignoids. Details on isolation and antiviral activities of the most active compounds within each class of lignan are discussed in detail, as are studies of synthetic lignans that provide structure-activity relationship information.

10.
Int J Environ Res Public Health ; 19(14)2022 07 08.
Article in English | MEDLINE | ID: covidwho-2231076

ABSTRACT

BACKGROUND: Mifepristone (RU-486) has been approved for abortion in Taiwan since 2000. Mifepristone was the first non-addictive medicine to be classified as a schedule IV controlled drug. As a case of the "misuse" of "misuse of drugs laws," the policy and consequences of mifepristone-assisted abortion for pregnant women could be compared with those of illicit drug use for drug addicts. METHODS: The rule-making process of mifepristone regulation was analyzed from various aspects of legitimacy, social stigma, women's human rights, and access to health care. RESULTS AND DISCUSSION: The restriction policy on mifepristone regulation in Taiwan has raised concerns over the legitimacy of listing a non-addictive substance as a controlled drug, which may produce stigma and negatively affect women's reproductive and privacy rights. Such a restriction policy and social stigma may lead to the unwillingness of pregnant women to utilize safe abortion services. Under the threat of the COVID-19 pandemic, the US FDA's action on mifepristone prescription and dispensing reminds us it is time to consider a change of policy. CONCLUSIONS: Listing mifepristone as a controlled drug could impede the acceptability and accessibility of safe mifepristone use and violates women's right to health care.


Subject(s)
Mifepristone , Public Policy , Abortion, Induced/methods , COVID-19/epidemiology , Female , Humans , Mifepristone/therapeutic use , Pandemics , Pregnancy , Women's Health , COVID-19 Drug Treatment
11.
Int J Mol Sci ; 24(2)2023 Jan 10.
Article in English | MEDLINE | ID: covidwho-2216330

ABSTRACT

Surface contamination by microorganisms such as viruses and bacteria may simultaneously aggravate the biofouling of surfaces and infection of wounds and promote cross-species transmission and the rapid evolution of microbes in emerging diseases. In addition, natural surface structures with unique anti-biofouling properties may be used as guide templates for the development of functional antimicrobial surfaces. Further, these structure-related antimicrobial surfaces can be categorized into microbicidal and anti-biofouling surfaces. This review introduces the recent advances in the development of microbicidal and anti-biofouling surfaces inspired by natural structures and discusses the related antimicrobial mechanisms, surface topography design, material application, manufacturing techniques, and antimicrobial efficiencies.


Subject(s)
Anti-Infective Agents , Biofouling , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Bacteria , Surface Properties
13.
Front Immunol ; 13: 1056272, 2022.
Article in English | MEDLINE | ID: covidwho-2198899

ABSTRACT

Introduction: The Middle East respiratory syndrome coronavirus (MERS-CoV) and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are two highly contagious coronaviruses causing MERS and COVID-19, respectively, without an effective antiviral drug and a long-lasting vaccine. Approaches for diagnosis, therapeutics, prevention, etc., particularly for SARS-CoV-2 that is continually spreading and evolving, are urgently needed. Our previous study discovered that >60% of sera from convalescent COVID-19 individuals, but <8% from general population, showed binding activity against the MERS-CoV spike protein, indicating that SARS-CoV-2 infection boosted antibodies cross-reactive with MERS-CoV. Methods: To generate antibodies specific to both SARS-CoV-2 and MERS-CoV, here we screened 60 COVID-19 convalescent sera against MERS-CoV spike extracellular domain and S1 and S2 subunits. We constructed and characterized monoclonal antibodies (mAbs) from COVID-19 convalescent memory B cells and examined their binding and neutralizing activities against human coronaviruses. Results and Discussion: Of 60 convalescent serum samples, 34 showed binding activity against MERS-CoV S2, with endpoint titers positively correlated with the titers to SARS-CoV-2 S2. By sorting single memory B cells from COVID-19 convalescents, we constructed 38 mAbs and found that 11 mAbs showed binding activity with MERS-CoV S2, of which 9 mAbs showed potent cross-reactivity with all or a proportion of spike proteins of alphacoronaviruses (229E and NL63) and betacoronaviruses (SARS-CoV-1, SARS-CoV-2, OC43, and HKU1). Moreover, 5 mAbs also showed weak neutralization efficiency against MERS-CoV spike pseudovirus. Epitope analysis revealed that 3 and 8 mAbs bound to linear and conformational epitopes in MERS-CoV S2, respectively. In summary, we have constructed a panel of antibodies with broad-spectrum reactivity against all seven human coronaviruses, thus facilitating the development of diagnosis methods and vaccine design for multiple coronaviruses.


Subject(s)
COVID-19 , Coronaviridae , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2 , Antibodies, Monoclonal , Memory B Cells , Antibodies, Viral , COVID-19 Serotherapy , Epitopes
14.
PLoS One ; 17(10): e0276509, 2022.
Article in English | MEDLINE | ID: covidwho-2089433

ABSTRACT

OBJECTIVE(S): To use machine learning (ML) to predict short-term requirements for invasive ventilation in patients with COVID-19 admitted to Australian intensive care units (ICUs). DESIGN: A machine learning study within a national ICU COVID-19 registry in Australia. PARTICIPANTS: Adult patients who were spontaneously breathing and admitted to participating ICUs with laboratory-confirmed COVID-19 from 20 February 2020 to 7 March 2021. Patients intubated on day one of their ICU admission were excluded. MAIN OUTCOME MEASURES: Six machine learning models predicted the requirement for invasive ventilation by day three of ICU admission from variables recorded on the first calendar day of ICU admission; (1) random forest classifier (RF), (2) decision tree classifier (DT), (3) logistic regression (LR), (4) K neighbours classifier (KNN), (5) support vector machine (SVM), and (6) gradient boosted machine (GBM). Cross-validation was used to assess the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of machine learning models. RESULTS: 300 ICU admissions collected from 53 ICUs across Australia were included. The median [IQR] age of patients was 59 [50-69] years, 109 (36%) were female and 60 (20%) required invasive ventilation on day two or three. Random forest and Gradient boosted machine were the best performing algorithms, achieving mean (SD) AUCs of 0.69 (0.06) and 0.68 (0.07), and mean sensitivities of 77 (19%) and 81 (17%), respectively. CONCLUSION: Machine learning can be used to predict subsequent ventilation in patients with COVID-19 who were spontaneously breathing and admitted to Australian ICUs.


Subject(s)
COVID-19 , Noninvasive Ventilation , Adult , Humans , Middle Aged , Aged , COVID-19/epidemiology , COVID-19/therapy , Critical Illness/therapy , Australia/epidemiology , Machine Learning
15.
Advanced materials technologies ; 2022.
Article in English | EuropePMC | ID: covidwho-2058093

ABSTRACT

The fomite transmission of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has drawn attention because of its highly contagious nature. Therefore, surfaces that can prevent coronavirus contamination are an urgent and unmet need during the coronavirus disease 2019 (COVID‐19) pandemic. Conventional surfaces are usually based on superhydrophobic or antiviral coatings. However, these coatings may be dysfunctional because of biofouling, which is the undesired adhesion of biomolecules. A superhydrophobic surface independent of the material content and coating agents may serve the purpose of antibiofouling and preventing viral transmission. Doubly reentrant topology (DRT) is a unique structure that can meet the need. This study demonstrates that the DRT surfaces possess a striking antibiofouling effect that can prevent viral contamination. This effect still exists even if the DRT surface is made of a hydrophilic material such as silicon oxide and copper. To the best of our knowledge, this work first demonstrates that fomite transmission of viruses may be prevented by minimizing the contact area between pathogens and surfaces even made of hydrophilic materials. Furthermore, the DRT geometry per se features excellent antibiofouling ability, which may shed light on the applications of pathogen elimination in alleviating the COVID‐19 pandemic. The findings demonstrate that a unique fabricated doubly reentrant topology (DRT) structure carries remarkable superrepellent properties against biofouling of protein, blood, bacteria, and viruses. Moreover, this characteristic results from a highly minimized contact area and still exists even if the DRT surface is made of a hydrophilic material, such as silicon oxide.

16.
Chin Med ; 17(1): 99, 2022 Aug 22.
Article in English | MEDLINE | ID: covidwho-2002204

ABSTRACT

OBJECTIVES: This study aimed to evaluate the effects of Chinese Medicine (CM) on the health condition of the post-COVID-19 patients, particularly with the CM Syndrome diagnosis and Body Constitutions (BC), as well as related clinical characteristics. METHODS: 150 participants who had COVID-19 and discharged from Hong Kong public hospitals were recruited. They were provided with three to six months of CM treatments, during which assessments were made per month and at follow-up on their CM syndromes, BC, lung functions, and other medical conditions. This study was divided into two parts: (1) Retrospective survey: medical history of participants during COVID-19 hospitalization was collected during the baseline visit; (2) Prospective observation and assessments: clinical symptoms, lung functions, and BC status were evaluated in participants receiving CM treatment based on syndrome differentiation and clinical symptoms. RESULTS: The median hospitalization period was 16 days. Symptoms were presented in 145 (96.6%) patients at the day they were diagnosed with COVID-19. Fever, fatigue, and dry cough were the most common symptoms, exhibiting in 59.3% (89 of 150), 55.3% (83 of 150), and 46% (70 of 150) participants, respectively. Among the 150 post-COVID patients, majority (71.3%) were of the two particular post-COVID CM Syndromes (Qi Deficiency of Lung and Spleen, and Qi and Yin Deficiency). Upon CM treatment, there was an observable increase in participants reaching a balanced BC (i.e. healthy body conditions). The increase was observed to be more prominent in those without the particular CM Syndromes compared to those with the CM Syndromes. Main clinical symptoms in participants with the CM Syndromes decreased upon CM treatment. Occurrence of fatigue also dropped after CM treatment though not all accompanied clinical symptoms were resolved fully. Further to the improvement in terms of CM assessments, lung functions of the participants were found to show improvement after treatment. Both the performance in 6MWT and scores in the LFQ improved upon CM treatments (P < 0.05). CONCLUSION: This study provided evidence for individualized CM treatment on COVID-19 rehabilitation concerning the clinical symptoms improvements, lung functions improvement, and achieving a balanced BC. It is believed that CM may be a key to further promote rehabilitation and resolution of residual symptoms. Long-term large scale follow-up studies on sub-categorising post-COVID patients according to different CM syndromes would be required to further elucidate treatment of persistent symptoms that may be associated with long-COVID.

17.
MedComm (2020) ; 3(3): e157, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1976753

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.

18.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.09.503302

ABSTRACT

CD4+ T follicular helper (TFH) cells are required for high-quality antibody generation and maintenance. However, the longevity and functional role of these cells are poorly defined in COVID-19 convalescents and vaccine recipients. Here, we longitudinally investigated the dynamics and functional roles of spike-specific circulating TFH cells and their subsets in convalescents at the 2nd, 5th, 8th, 12th and 24th months after COVID-19 symptom onset and in vaccinees after two and three doses of inactivated vaccine. SARS-CoV-2 infection elicited robust spike-specific TFH cell and antibody responses, of which spike-specific CXCR3+ TFH cells but not spike-specific CXCR3- TFH cells and neutralizing antibodies were persistent for at least two years in more than 80% of convalescents who experienced symptomatic COVID-19, which was well coordinated between spike-specific TFH cell and antibody responses at the 5th month after infection. Inactivated vaccine immunization also induced spike-specific TFH cell and antibody responses; however, these responses rapidly declined after six months with a two-dose standard administration, and a third dose significantly promoted antibody maturation and potency. Functionally, spike-specific CXCR3+ TFH cells exhibited better responsiveness than spike-specific CXCR3- TFH cells upon spike protein stimulation in vitro and showed superior capacity in supporting spike-specific antibody secreting cell (ASC) differentiation and antibody production than spike-specific CXCR3- TFH cells cocultured with autologous memory B cells. In conclusion, spike-specific CXCR3+ TFH cells played a dominant functional role in antibody elicitation and maintenance in SARS-CoV-2 infection and vaccination, suggesting that induction of CXCR3-biased spike-specific TFH cell differentiation will benefit SARS-CoV-2 vaccine development aiming to induce long-term protective immune memory.


Subject(s)
COVID-19
19.
Journal of neurosurgery. Case lessons ; 1(17), 2021.
Article in English | EuropePMC | ID: covidwho-1940255

ABSTRACT

BACKGROUND Hemangioblastomas are rare, slow-growing, and highly vascularized tumors that typically occur in the cerebellum and spinal cord. The cervical and thoracic regions are the most common spinal sites, and the tumors are usually intramedullary. OBSERVATIONS The authors report the case of a man whose chest computed tomography performed for managing coronavirus disease 2019 incidentally revealed an enhancing area in the spinal canal at T12–L1. The patient reported low back pain as well as leg numbness and tingling. Magnetic resonance imaging of the lumbar region with and without gadolinium contrast demonstrated an intradural, extramedullary lesion with displacement of the conus medullaris. The differential diagnosis included a schwannoma and myxopapillary ependymoma. Bilateral T12–L1 laminectomies were performed with resection of the mass. The general pathologist rendered the frozen section diagnosis of a spindle cell neoplasm, suggesting the differential diagnosis of schwannoma or myxopapillary ependymoma. Immunohistochemistry was positive for inhibin, GFAP, reticulin, CD31, SOX-10, S100, and EMA. A World Health Organization grade 1 hemangioblastoma was confirmed. LESSONS Spinal surgeons should be cognizant of the presenting symptoms and differential diagnosis of hemangioblastomas at the level of the conus medullaris, especially when the tumor is diagnosed incidentally. Additional investigations should be performed to determine whether von Hippel-Lindau syndrome is associated with the hemangioblastoma, as this combination portends a different clinical presentation, multiple tumor locations, and tumor recurrence following resection.

20.
iScience ; 25(8): 104709, 2022 Aug 19.
Article in English | MEDLINE | ID: covidwho-1914524

ABSTRACT

Post-translational modifications (PTMs), such as glycosylation and palmitoylation, are critical to protein folding, stability, intracellular trafficking, and function. Understanding regulation of PTMs of SARS-CoV-2 spike (S) protein could help the therapeutic drug design. Herein, the VSV vector was used to produce SARS-CoV-2 S pseudoviruses to examine the roles of the 611LYQD614 and cysteine-rich motifs in S protein maturation and virus infectivity. Our results show that 611LY612 mutation alters S protein intracellular trafficking and reduces cell surface expression level. It also changes S protein glycosylation pattern and decreases pseudovirus infectivity. The S protein contains four cysteine-rich clusters with clusters I and II as the main palmitoylation sites. Mutations of clusters I and II disrupt S protein trafficking from ER-to-Golgi, suppress pseudovirus production, and reduce spike-mediated membrane fusion activity. Taken together, glycosylation and palmitoylation orchestrate the S protein maturation processing and are critical for S protein-mediated membrane fusion and infection.

SELECTION OF CITATIONS
SEARCH DETAIL